

MTS SDK Java Developer Guide
November 2018

Page | 1 www.betradar.com

Table of Contents

1 Introduction ... 2

2 SDK High Level Overview .. 2

3 Start using the SDK .. 3

3.1 Ticket Sender ... 4

3.2 Ticket Cancellation Sender .. 6

3.3 Ticket Acknowledgement Sender ... 7

3.4 Ticket Cancel Acknowledgement Sender ... 8

4 SDK Configuration Settings .. 9

Page | 2 www.betradar.com

1 Introduction

To make Managed Trading Service (MTS) integration as quick and easy as possible Software
Development Kit (SDK) was developed.

SDK exposes MTS ticket interface in a more user-friendly way and isolates the client from
having to do proper connection handling, throttling, message parsing and sending. It also adds
valuable diagnostics information, which in turn can help to solve client support issues.

This document contains info about Java implementation and usage of the SDK.

2 SDK High Level Overview

SDK under the hood is working over AMQP protocol but this could change in the future. While
the SDK tries to abstract away as much details as possible, clients should still be familiar with
basics of the AMQP protocol.

AMQP specifications are available at https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf

SDK will be always built against the latest version of the MTS ticket protocol so that a client can
simply choose to upgrade the protocol (SDK) whenever he wants to and get all the benefits of
new functionality immediately. We still recommend testing each new version of the SDK against
the MTS staging (i.e. client integration) environment.

With each new release we will provide release notes where it will be stated if there are any
breaking changes in the SDK interface or the protocol itself and what are all the new features
and bug fixes.

For further information we also recommend reading “MTS integration with AMQP” and “MTS
Ticket Integration” documents, which you should have already received during the course of
integration.

Page | 3 www.betradar.com

3 Start using the SDK

In this document pseudo code is used to give you some basic understanding. For actual

working examples please take a look at the accompanied SDK example project.

First create a new instance of MTS SDK

MtsSdkApi mtsSdk = new MtsSdk();

This creates the SDK but does not start it yet so no connections are established at this point.

To actually initiate a connection with MTS RabbitMQ ticket gateway, you have to open the

connection first. There are three possible ways.

First option:

MtsSdkApi.open()

This will initialize the SDK using the “mts-sdk.properties” file located in your resources folder.

Second option:

MtsSdkApi.open(String filePath)

This will initialize the SDK using the file found in the path you specified. It can be either an

absolute or relative path. Settings format in the file must be the same as in “mts-sdk.properties”.

Third option:

MtsSdkApi.open(Properties properties)

This will initialize the SDK using provided properties where key-value pairs correspond to

contents of the “mts-sdk.properties” file.

It is possible to create multiple SDK instances using different settings, which can prove useful if

you want to run multiple SDKs on the same JVM, thus connecting through multiple RabbitMQ

virtual hosts.

Page | 4 www.betradar.com

After SDK is initialized you can create one or more messages senders. There are four different

types of senders based on the actual use case:

 TicketSender

 TicketCancelSender

 TicketAcknowledgmentSender

 TicketCancelAcknowledgmentSender

3.1 Ticket Sender

The main sender is TicketSender which is used to send tickets to MTS and receive acceptance

information in response. You obtain a new instance by calling

TicketSender ticketSender =
MtsSdkApi.getTicketSender(TicketResponseListener responseListener)

You have to supply your implementation of response handler where you will receive events on

whether ticket was successfully published or not (i.e. AMQP publisher confirms) as well as MTS

acceptance response, i.e. whether ticket should be accepted or rejected by the client.

There are two ways of sending tickets. The preferred way is asynchronously but you can also

send them synchronously. First one is by using

TicketSender.send(Ticket ticket)

This will send a ticket asynchronously and trigger response in your response listener. This is the

recommended way of sending tickets.

Clients who find synchronous interface better suiting to their needs can send tickets in a

blocking fashion

TicketResponse response = TicketSender.sendBlocking(Ticket ticket) throws
ResponseTimeoutException

Page | 5 www.betradar.com

This method will block calling thread until ticket is either accepted or rejected or throw

ResponseTimeoutException if reply is not received in time (usually after 15s). This method

returns a TicketResponse. TicketResponseListener will not be triggered in this case.

Before sending any ticket you need to generate a Ticket using TicketBuilder. MTS ticket is

structured hierarchically but we made the builder flat with only selections as sub objects of the

ticket. Below is an example of how a ticket might be constructed.

Ticket ticket = TicketSender.newBuilder()
 .setBookmakerId(10)
 .setTicketId(“f2f5b035-7ded-4527-9c3f-73cab71fb15b”)
 .setLimitId(2)
 .setChannelId(SourceChannel.INTERNET)
 .setDeviceId("e4fe9bde-caa0-47b6-908d-ffba3fa184f2")
 .setEndCustomerId("User123456")
 .setEndCustomerIp("1.3.3.7")
 .setLanguageId("EN")
 .setCurrency("EUR")
 .setStake(5.0)
 .setSystem(0) // accumulator bet
 .setBonusWin(10.2)
 .addSelection()
 .setLine(LineType.PREMATCH)
 .setMarket("lcoo:10/1/*/1")
 .setMatch(9569629)
 .setOdd(1.1)
 .buildSelection()
 .addSelection()
 .setLine(LineType.PREMATCH)
 .setMarket("lcoo:12/2/*/2")
 .setMatch(5369329)
 .setOdd(1.3)
 .buildSelection()
 .build()

To add selections you call

TicketBuilder.addSelection()

It returns selection builder where you can set various selection properties. When you are done

with selection you call

SelectionBuilder.buildSelection()

Page | 6 www.betradar.com

It builds the selection, adds the selection to parent object and returns the ticket builder.

3.2 Ticket Cancellation Sender

If you want to cancel a ticket use TicketCancelSender. Similar to ticket sender both

synchronous and asynchronous types of interfaces are supported.

New instance is created by

TicketCancelSender ticketSender = MtsSdkApi.getTicketCancelSender(
TicketCancelResponseListener responseListener)

You should supply ResponseListener where you will receive notifications of whether ticket

cancellation was successfully published on RabbitMQ and to get a final ticket cancellation

response from MTS, i.e. cancellation accepted or rejected.

Example of ticket cancellation

TicketCancel ticketCancel = TicketCancelSender.newBuilder()
 .setCancelMessageId("messageID")
 .setTicketId(“ticket id”)
 .setBookmakerId(1)
 .setCancellationReason(101)
 .setReasonMessage("customer cancelled ticket")
 .build()

After you have constructed a TicketCancel object you have to send it with TicketCancelSender

TicketCancelSender.send(TicketCancel ticketCancel)

Page | 7 www.betradar.com

3.3 Ticket Acknowledgement Sender

Ticket acknowledgment sender can be used to acknowledge back to MTS of whether preceding

MTS ticket acceptance suggestion was followed or not by the client which in turn makes it

easier to reconcile the records on both sides.

As acknowledgments are one-way you will only be able to receive confirmations of whether

acknowledgement was successfully delivered to MTS or not. There will be no other replies.

Acknowledgement sender creation:

TicketAcknowledgmentSender ticketAckSender =
MtsSdkApi.getTicketAcknowledgmentSender (
TicketAcknowledgmentResponseListener responseListener)

Acknowledgement message creation:

TicketAcknowledgment ticketAcknowledgment =
TicketAcknowledgmentSender.newBuilder()
 .setTicketId(“ticket id”)
 .setAckStatus(TicketAckStatus.ACCEPTED)
 .setBookmakerId(1)
 .setSourceCode(100)
 .build();

Acknowledgement sending:

TicketAcknowledgmentSender.send(TicketAcknowledgment ticketAcknowledgment);

Page | 8 www.betradar.com

3.4 Ticket Cancel Acknowledgement Sender

Ticket cancellation acknowledgment sender can be used to acknowledge back to MTS of

whether preceding MTS ticket cancellation response was followed or not by the client which in

turn makes it easier to reconcile the records on both sides.

Sender creation:

TicketCancelAcknowledgmentSender ticketCancelAckSender =
MtsSdkApi.getTicketCancelAcknowledgmentSender (
TicketCancelAcknowledgmentResponseListener responseListener)

Message creation:

TicketCancelAcknowledgment ticketCancelAcknowledgment =
TicketCancelAcknowledgmentSender.newBuilder()
 .setTicketId(“ticket id”)
 .setAckStatus(TicketCancelAckStatus.CANCELLED)
 .setBookmakerId(1)
 .setSourceCode(101)
 .build();

Message sending:

TicketCancelAcknowledgmentSender.send(TicketCancelAcknowledgment
ticketCancelAcknowledgment);

Page | 9 www.betradar.com

4 SDK Configuration Settings

Setting Mandatory Default Description
mts.sdk.username yes AMQP username
mts.sdk.password yes AMQP password
mts.sdk.hostname yes

Hostname
CI: mtsgate-ci.betradar.com
Prod: mtsgate-t1.betradar.com

mts.sdk.vhost no AMQP virtual host (default: /username)
mts.sdk.ssl no true Use SSL for communication
mts.sdk.port no 5671 Port

5671 if ssl=true, else 5672
mts.sdk.node no 1 Node id to be used when creating routing key
mts.sdk.bookmakerId no 0 When provided, it is used as the default value

for the BookmakerId on the ticket.
mts.sdk.limitId no 0 When provided, it is used as the default value

for the LimitId property on the ticket.
mts.sdk.currency no When provided, it is used as the default value

for the Currency property on the ticket.
mts.sdk.channel no When provided, it is used as the default value

for the
SenderChannel property on the ticket.

mts.sdk.accessToken no When selections are build using UnifiedOdds
ids, the accessToken is used to access
sports API.

mts.sdk.
provideAdditionalMarket
Specifiers

no true This value is used to indicate if the sdk
should add market specifiers for specific mar-
kets. Only used when building selection using
UnifiedOdds ids.

mts.sdk.
exclusiveConsumer

no true The value specifying whether the rabbit
consumer channel should be exclusive.

