

MTS SDK Java Integration Guide

April 2019

2 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Document	version	

Version Author Date Comments
1.7 Srđan

Tot
2019-04-29 Added new timeout configuration properties

1.6 Srđan
Tot

2019-02-27 Added timeout configuration properties

1.5 Srđan
Tot

2019-02-13 Added MTS Client API configuration properties

1.4 David
Hrovat

2018-10-11 Added exclusiveConsumer configuration property

1.3 David
Hrovat

2017-11-10 Added port property to settings

1.2 David
Hrovat

2017-09-12 Added provideAdditionalMarketSpecifiers property to
settings

1.1 Uros
Bregar

2017-09-09 Added description about Rest log
Added accessToken configuration property
Updated method SetIdUof

1.0 Uros
Bregar

2015-04-13 Initial version

	 	

3 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Table	of	Contents	

DOCUMENT VERSION 2

GETTING STARTED 4

LOGGING 4

CONFIGURATION 5

OBTAINING THE SDK 8

SDK SETUP AND TEARDOWN 8

BUILDING TICKET INSTANCES 10

SENDING TICKETS TO MTS 12

TIPS AND TRICKS 13

BUILDING SELECTION INSTANCES 13

	 	

4 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Getting	started	

Before starting to use the SDK please read the appropriate MTS documentation found on
www.betradar.com under Help/Developer Zone/Downloads. SDK examples and code
documentation is available on the https://sdk.sportradar.com.

Logging	

To more easily find the log entry associated with a specific action that occurred within the
SDK, the logs are split into several files.

• Traffic log: contains log entries for all messages send to or received from the MTS
• Rest log: contains log entries for all messages send or received from API calls1
• Execution log: contain log entries for all important actions and all error / warning

conditions which occur within the SDK

For more information about the configuration of the SDK’s logging module please refer to
configuration section of this document.

Log files are used by the support team, so it is recommended to send them along with any
issue related e-mails.

1 REST API calls are made only when building ticket with UF selections

5 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Configuration	

The SDK configuration can be specified in three different ways when opening the MtsSdk
instance.

• mtsSdk.open() : Attempts to load the configuration from the de-
fault configuration file mts-sdk.properties.

• mtsSdk.open(filePath): Attempts to load the configuration from
the configuration file specified by the file path.

• mtsSdk.open(properties); Attempts to load the configuration
form the provided Properties instance

Note: all properties are written without quotation marks.

mts.sdk.username=username
mts.sdk.password=password
mts.sdk.hostname= mtsgate-ci.betradar.com
mts.sdk.vhost=/vhost
mts.sdk.ssl=true
mts.sdk.node=3
mts.sdk.bookmakerId=1
mts.sdk.limitId=1
mts.sdk.currency=EUR
mts.sdk.channel=INTERNET
mts.sdk.accessToken=your_uf_access_token
mts.sdk.provideAdditionalMarketSpecifiers=true
mts.sdk.port=5671
mts.sdk.exclusiveConsumer=true
mts.sdk.keycloakHost="https://mts-auth.sportradar.ag"
mts.sdk.keycloakUsername="username"
mts.sdk.keycloakPassword="password"
mts.sdk.keycloakSecret="secret"
mts.sdk.mtsClientApiHost="http://10.200.24.234:9211/edge/proxy"
mts.sdk.ticketResponseTimeout=15000
mts.sdk.ticketCancellationResponseTimeout=600000
mts.sdk.ticketCashoutResponseTimeout=600000
mts.sdk.ticketNonSrSettleResponseTimeout=600000
mts.sdk.ticketTimeoutCallbackEnabled=false

6 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Required attributes:

• mts.sdk.username: Username used to connect to the AMQP broker. Betradar pro-
vides this value.

• mts.sdk.password: Password used to connect to the AMQP broker. Betradar pro-
vides this value.

• mts.sdk.hostname: The hostname of the AMQP broker. Please use the following
hostnames unless the integration team provides different ones.

o Integration environment: mtsgate-ci.betradar.com
o Production environment: mtsgate-t1.betradar.com

Optional attributes:

• mts.sdk.vhost: The name of the virtual host configured on the AMQP broker. If the
value is not specified the value of ‘/username’ attribute is used as virtual host.

• mts.sdk.ssl: The value specifying whether SSL will be used when connecting to the
broker. Default value is true.

• mts.sdk.node: This value is used to filter MTS responses which were produced as
responses to requests send by different SDK instances. In most configurations each
SDK should use different node value. Default value is 1.

• mts.sdk.bookmakerId: When provided, it is used as the default value for the Book-
makerId on the ticket. The value can be overridden when building the ticket. Betra-
dar provides this value.

• mts.sdk.limitId: When provided, it is used as the default value for the LimitId
property on the ticket. The value can be overridden when building the ticket. Betra-
dar provides the set of available values.

• mts.sdk.currency: When provided, it is used as the default value for the Currency
property on the ticket. The value must comply with the ISO 4217 standard.

• mts.sdk.channel: When provided, it is used as the default value for the
SenderChannel property on the ticket. Value must be one of the SenderChannel
enumeration members.

• mts.sdk.accessToken: When selections are build using UnifiedOdds ids, the ac-
cessToken is used to access sports API. Also ensure that server running the sdk is
whitelisted on api.betradar.com. Betradar provides this value.

• mts.sdk.provideAdditionalMarketSpecifiers: This value is used to indicate if
the sdk should add market specifiers for specific markets. Only used when building
selection using UnifiedOdds ids. If this is set to true and the user uses UOF markets,
when there are special cases (market 215, or $score in SOV/SBV template), sdk au-

7 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

tomatically tries to add appropriate specifier; if set to false, user will need to add this
manually.

• mts.sdk.port: Port should be chosen through the ssl property. Manually setting
port number should be used only when non-default port is required.

• mts.sdk.exclusiveConsumer: The value specifying whether the rabbit consumer
channel should be exclusive. Default value is true.

• mts.sdk.keycloakHost: The auth server for accessing MTS Client API.
• mts.sdk.keycloakUsername: The default username used to get access token from

the auth server. It can be overridden when the MTS Client API methods are called.
• mts.sdk.keycloakPassword: The default password used to get access token from the

auth server. It can be overridden when the MTS Client API methods are called.
• mts.sdk.keycloakSecret: The secret used to get access token from the auth server.
• mts.sdk.mtsClientApiHost: The MTS Client API host.
• mts.sdk.ticketResponseTimeout: The ticket response timeout in ms used when send-

ing ticket blocking or when ticketTimeoutCallbackEnabled is set to true. Default value
is 15000ms and it can't be less than 10000ms or greater than 30000ms.

• mts.sdk.ticketCancellationResponseTimeout: The ticket cancellation response
timeout in ms used when sending ticket blocking or when ticketTimeoutCallbackEna-
bled is set to true. Default value is 600000ms and it can't be less than 10000ms or
greater than 3600000ms.

• mts.sdk.ticketCashoutResponseTimeout: The ticket cashout response timeout in ms
used when sending ticket blocking or when ticketTimeoutCallbackEnabled is set to
true. Default value is 600000ms and it can't be less than 10000ms or greater than
3600000ms.

• mts.sdk.ticketNonSrSettleResponseTimeout: The ticket non-Sportradar response
timeout in ms used when sending ticket blocking or when ticketTimeoutCallbackEna-
bled is set to true. Default value is 600000ms and it can't be less than 10000ms or
greater than 3600000ms.

• mts.sdk.ticketTimeoutCallbackEnabled: An indication if the tickets sent async should
have a time-out callback.

For more information about the ticket properties please refer to the MTS_Ticket_Integration
document.

8 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Obtaining	the	SDK	

The SDK is provided as a code library available for download on the SDK site. The archive
contains three jar files using different packaging.

• mts-sdk-version-fatjar.shaded.jar – A shaded jar with dependencies
• mts-sdk-version-fatjar.jar – A non-shaded jar with dependencies
• mts-sdk-version-tinyjar.jar – A jar file without dependencies. Use the pom.xml file

found in the archive to specify the SDK’s dependencies

SDK	setup	and	teardown	

The SDK is setup by the following steps:

• Creating an instance of the MtsSdk class.
• Opening the created MtsSdk instance using one of the open(…) methods.
• Obtaining various sender objects, which can be used to send messages to the MTS

These steps can be performed by the following code:

MtsSdkApi mtsSdk = new MtsSdk();
mtsSdk.open();
BuilderFactory builderFactory = mtsSdk.getBuilderFactory();
TicketAckSender ticketAckSender =
mtsSdk.getTicketAcknowledgmentSender(new TicketAckHandler());
TicketCancelAckSender ticketCancelAckSender =
mtsSdk.getTicketCancelAcknowledgmentSender(new TicketCan-
celAckHandler());
TicketCancelSender ticketCancelSender =
mtsSdk.getTicketCancelSender(new TicketCancelRe-
sponseHandler(ticketCancelAckSender, builderFactory));
TicketSender ticketSender = mtsSdk.getTicketSender(new Ticket-
ResponseHandler(ticketCancelSender, ticketAckSender, builder-
Factory));

For more information on how to implement listener callback methods please refer to the
SDK examples and/or the SDK code documentation.

9 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Once the initialized MtsSdk instance is no longer needed, it must be teardown in order to
release resources held by it. This can be accomplished by the following method call:

mtsSdk.close();

1 0 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Building	ticket	instances	

The SDK uses a “builder pattern” to simplify the process of creating new ticket instances.
Below is the list of most noticeable builders.

• TicketBuilder: A root builder used as a starting point when building tickets.
• SenderBuilder: Used to specify the information about a ticket sender (bookmaker).
• EndCustomerBuilder: Used to build EndCustomer instances, representing the punt-

er associated with the ticket. This information is part of the send element.
• BetBuilder: Used to build bet instances, which is part of the ticket. Each ticket must

contain at least one bet.
• SelectionBuilder: Used to build selection instances, which are parts of bet. Each

bet must contain at least one selection.

Below is a code snippet, which builds a ticket containing the mandatory information. Please
note that some information from the configuration gets automatically applied to the ticket,
so changing the configuration can make the snippet below produce an incomplete ticket. For
more information refer to configuration section of this document and to
MTS_Ticket_Integration document.

1 1 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Ticket ticket = builderFactory.createTicketBuilder()
 .setTicketId("T-" + System.currentTimeMillis())
 .setOddsChange(OddsChangeType.ANY)
 .setSender(builderFactory.createSenderBuilder()
 .setBookmakerId(Constants.BOOKMAKER_ID)
 .setLimitId(Constants.LIMIT_ID)
 .setSenderChannel(SenderChannel.INTERNET)
 .setCurrency("EUR")

.setEndCustomer(builderFactory.createEndCustomerBuilder()
 .setIp("127.0.0.1")
 .setId("Customer1")
 .setLanguageId("EN")
 .setDeviceId("device1")
 .setConfidence(12092)
 .build())
 .build())
 .addBet(
 builderFactory.createBetBuilder()
 .setBetId("Bet-" + System.currentTimeMillis())
 .addSelectedSystem(1)
 .setStake(50000, StakeType.UNIT)
 .addSelection(

builderFactory.createSelectionBuilder()
 .setEventId(9738581)
 .setId("lcoo:43/1/*/YES")
 .setOdds(14800)
 .setBanker(false)
 .build())
 .build()
)
 .build();

	 	

1 2 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Sending	tickets	to	MTS	

SDK supports two ways of sending tickets to the MTS. The recommended way is to use the
non-blocking mode. Non-blocking indicates the execution of the current thread is not
blocked after the ticket is send and the response from MTS is processed in another thread.
To send a ticket in a non-blocking mode, the following call can be used:

ticketSender.send(ticket);

When sending the ticket in the blocking mode, the current thread is blocked until a response
from MTS is received or a timeout occurs (usually 15 seconds). When using the blocking
mode the responseReceived(…) callback method on the listener is not invoked. Timeouts can
be set using ticketResponseTimeout, ticketCancellationResponseTimeout and
ticketCashoutResponseTimeout configuration attributes. Ticket can be sent in a blocking
mode using the following statement:

TicketResponse ticketResponse = ticketSend-
er.sendBlocking(ticket);

	 	

1 3 | P a g e

Sportradar AG
www.sportradar.com

Feldlistrasse 2
CH-9000 St. Gallen
Switzerland

P: +41 71 517 72 00
F: +41 71 517 72 99
E: sales@sportradar.com

Company Identification
No:CHE-113.075.404

Tips	and	tricks	

Building	selection	instances	

The SDK supports markets used by three Betradar feeds – LO (Live Odds), LCoO (Live Cycle of
Odds) and UF (Unified Feed) implemented by different methods on the
SelectionBuilder type.

• setId(String id);
This method should be used when building string representations of the market
identifiers directly (without the help from the SDK).

• setIdLo(int type, int subType, String sov, String selec-
tionId);
This method should be used when building market identifiers from information pro-
vided by the LO feed.

• setIdLcoo(int type, int sportId, String sov, String selec-
tionId); This method should be used when building market identifiers from in-
formation provided by the LCoO feed.

• setIdUof(int product, String sportId, int marketId, String se-
lectionIds, Map<String, String> specifiers, Map<String, Ob-
ject> sportEventStatus);
This method should be used when building market identifiers from information pro-
vided by the UF feed. Note: this method will throw if accessToken is not provided.
Method parameter sportEventStatus needs the following keys:

o HomeScore (home_score in sport event status)
o AwayScore (away_score in sport event status)
o Server (current_server in sport event status)

If you are using UnifiedFeed sdk the map with the correct keys may be obtained:
Map<String, Object> sportEventStatus = competition.getStatus().toKeyValueStore();

