

MTS SDK .NET Integration
Guide
December 2023

 www.sportradar.com Page | 2

1 Document history

Version Author Date Comments
1.11 Aleš

Mrak,
2023-12-01 Added comments on best practices how to use

SDK,

Dejan
Pavšek

Added chapter Client – MTS information
interchange,
Updated document template

1.10 David
Hrovat

2020-10-20 Added configuration property sslServerName

1.9 David
Hrovat

2019-08-09 Added configuration property
ticketResponseTimeoutPrematch

1.8 Srđan
Tot

2019-05-28 Added description about custom bet

1.7 Srđan
Tot

2019-04-29 Added new timeout configuration properties

1.6 Srđan
Tot

2019-02-27 Added timeout configuration properties

1.5 Srđan
Tot

2019-02-13 Added MTS Client API configuration properties

1.4 David
Hrovat

2018-10-11 Added exclusiveConsumer configuration property

1.3 David
Hrovat

2017-11-10 Added port number configuration property

1.2 David
Hrovat

2017-09-12 Added provideAdditionalMarketSpecifiers property
to config section

1.1 Uros
Bregar

2017-09-09 Added description about Rest and Cache log
Added accessToken configuration property
Updated method SetIdUof

1.0 Uros
Bregar

2015-03-13 Initial version

 www.sportradar.com Page | 3

2 Table of contents

1 Document history ... 2
2 Table of contents .. 3
3 Getting started .. 4
4 Client – MTS information interchange .. 5

4.1 Virtual host, username and password ... 5
4.2 List of interchanged messages .. 5
4.3 RabbitMQ exchanges .. 7
4.4 RabbitMQ queues .. 8

4.4.1 Queue naming convention ... 8
4.4.2 Queue naming recommendation ... 9

4.5 Message control .. 9
4.5.1 Determining response queues, replyRoutingKey .. 9
4.5.2 replyRoutingKey convention .. 13
4.5.3 Recommendation .. 13
4.5.4 Creating and binding the RabbitMQ queues ... 14
4.5.5 correlationId ... 16

4.6 Connecting a queue consumer without MTS SDK .. 16
5 Logging .. 17
6 Configuration .. 18
7 Obtaining the SDK ... 20
8 SDK setup and teardown ... 20
9 Building ticket instances ... 21
10 Sending tickets to MTS .. 23
11 Custom bet .. 24
12 Tips and tricks ... 25

12.1 Using multiple SDK instances ... 25
12.2 Checking connection status ... 25
12.3 Connection and reconnection handling using the SDK ... 25
12.4 Additional notes for connection whitelisting ... 26
12.5 Building selection instances .. 27

 www.sportradar.com Page | 4

3 Getting started

Before starting to use the SDK, please read the MTS documentation found at
docs.betradar.com, chapter Managed Trading Services (MTS) / MTS – Ticket
Integration Manual.

SDK examples and code documentation is available at the https://sdk.sportradar.com.

http://docs.betradar.com/
https://sdk.sportradar.com/

 www.sportradar.com Page | 5

4 Client – MTS information interchange

4.1 Virtual host, username and password

Please contact your Betradar MTS-integration manager for your username and
password.

As a convention, this username is used in the virtual host’s name as well as for the
names of your designated Exchanges and Queues.

The virtual hostname is then simply /username (a slash followed by the username).

4.2 List of interchanged messages

The basic functionality is the submission of tickets (Ticket placement request) and
receiving the outcome (Ticket placement response) of the validation process performed
by MTS. The outcome is suggestion whether a ticket should be accepted or rejected. A
ticket represents one or more bets placed by end customers (punters).

Client (bookmaker or platform) submits the punter’s ticket information, which represents
the main message/payload for the validation process. Additionally, the client has an
option to respond, informing MTS about their decision regarding the MTS’
recommendation. It means they have the option to submit Info Ticket acceptance.

Other messages include:

- Submitting a Ticket cancellation, receiving a response and in some cases
submitting an acknowledgement message

- Submitting a Ticket cashout request and receiving a response

- Submitting a Non-SR content settlement request and receiving a response (non-
Sportradar content means betting events that are managed by the client rather
than Sportradar, so also their settlement information must be submitted by the
client)

The following diagram depicts types of messages and the RabbitMQ Exchanges and
Queues that the messages should be submitted to or consumed from, respectively.

 www.sportradar.com Page | 6

 www.sportradar.com Page | 7

4.3 RabbitMQ exchanges

The following exchanges are used:

Exchange
name

Purpose Type Access/Options Description

username-
Submit

submit ticket
information

fanout write ticket placement
requests

username-
Control

submit control
messages

topic write sending:
cancellation,
cashout, non-SR
settlement requests

username-
Confirm

receive ticket
acceptance
recommendations
(accepted/
rejected)

topic read/ configure ticket placement
responses

username-
Reply

receive control
message
responses
(accepted
/rejected)

topic read/ configure cancellation,
cashout and non-SR
settlement
responses

username-
Ack

submit :

info ticket
acceptance, info
ticket cancellation
acceptance

topic write customer feedback
on MTS’ ticket
acceptance/rejection
recommendation (in
case of explicit acks
needed for national
state lotteries)
customers’ final
decisions on ticket
cancellations

Exchanges are durable and are declared and maintained by the MTS side. Clients need
to know which one to publish a message to and which one to bind the Queue to before
consuming messages.

 www.sportradar.com Page | 8

4.4 RabbitMQ queues

Queue name Type Purpose Description
username-Confirm

any queue receiving ticket
acceptance
recommendations

ticket placement
response

username-Reply any queue receiving responses
to cancellation
requests

cancellation
responses
(accepted /rejected)

username-Reply-
cashout

any queue receiving responses
to cashout requests

cashout responses
(accepted /rejected)

username-Reply-
nonsrsettle

any queue receiving responses
to non-SR
settlement requests

non-SR settlement
responses
(accepted /rejected)

The client is obliged to:

- declare,

- bind,

- consume from,

- maintain the queues of all custom needs

Details are listed in the Creating and Binding the RabbitMQ queues chapter below.

4.4.1 Queue naming convention

The client has the right to instantiate any AMQP-entity within their vhost that follows the
following naming-pattern:

“username-(Submit|Confirm|Ack|Control|Reply|Reply-cashout|Reply-nonsrsettle)” your
username followed by a dash followed by one of the “|” (or) – separated strings ‘ within
the brackets followed by any valid string. According to the RabbitMQ documentation a
valid string here can be empty or a sequence of these characters: letters, digits,
hyphen, underscore, period or colon.

 www.sportradar.com Page | 9

4.4.2 Queue naming recommendation

We recommend to name all Queues respective of the Exchange you want to bind them
to:

- username-Confirm-nodeX, if you intend to bind this Queue to your Confirm-Exchange

- username-Reply-nodeX, if you intend to bind this Queue to your Reply-Exchange

Here “username-Reply-” and ”username-Control-” are strings where “–nodeX”
represents the id you dedicate internally on your side to the client-node within your
cluster that you wish to receive the MTS response on (typically the one you send the
related message to MTS in the first place with), of which the X stands for an integer
(see chapter Queue naming convention).

4.5 Message control

4.5.1 Determining response queues, replyRoutingKey

The following diagram shows a typical client setup. There are multiple server nodes (for
performance or availability reasons) that independently submit tickets to the Submit
exchange. For creating and binding queues, see the corresponding chapter below.

 www.sportradar.com Page | 10

1A) Ticket placement

However, the ticket response must be sent exactly to the node from which the ticket
originated. This is achieved by multiple Confirm queues (each of them designated for a
particular node) and the replyRoutingKey. Every ticket that is submitted to the Submit
exchange must contain the replyRoutingKey in the message header. This key will be
used by MTS as the Routing Key when submitting the response to the Confirm
exchange.

1B) Ticket placement response

 www.sportradar.com Page | 11

1C) Acknowledgement (in the case if explicit acks are needed for national state
lotteries) - (distinguish from “consumer acks”)

The replyRoutingKey is used in the same way also in the cases of Ticket cancellation,
Ticket cashout and Ticket settlements with non-SR content.

2A) Ticket cancellation and response

 www.sportradar.com Page | 12

2B) Cancellation acknowledgement

3) Ticket cashout and response

 www.sportradar.com Page | 13

4) Ticket settlements with non-SR content

4.5.2 replyRoutingKey convention

The value of this header field can contain any valid non-empty string as a prerequisite
for a successful response relay. However, it must match at least one binding-key of at
least one of the queues you bound to the respective exchange.

Note: If you don’t set a valid replyRoutingKey for tickets, it will be set by MTS
automatically to the string “not_set”.

If you don’t set a valid replyRoutingKey for cancellation requests it will be set by MTS
automatically to the string “cancel”.

4.5.3 Recommendation

We recommend the following values if it comes to the replyRoutingKeys and the
matching binding- keys for your Queues (see also Chapter Queue Naming
Recommendations):

 www.sportradar.com Page | 14

message-type replyRoutingKey & Queue binding-
key

ticket (info) nodeX.ticket.confirm

cancellation request nodeX.cancel.confirm

cashout request nodeX.ticket.cashout

non-SR settlement request nodeX.ticket.nonsrsettle

4.5.4 Creating and binding the RabbitMQ queues

Prior to using the RabbitMQ, clients must create and bind the queues. Naming
convention defines that the queue names follow the pattern: “username-Confirm-
nodeX” (where X is the number of the corresponding queue). When binding the
“username-Confirm-nodeX” queue, the binding key should be: binding-key:
”nodeX.ticket.confirm” (where X is the number of the corresponding queue).

 www.sportradar.com Page | 15

Queues related to cancellation responses are created and bound in this way:

And in the same way also queues used for cashout responses:

 www.sportradar.com Page | 16

Non-SR settlement responses:

4.5.5 correlationId

For identifying which MTS response corresponds to which message sent initially by you
towards MTS we offer a more convenient option, apart from a tedious parsing of the
message payload in order to then compare the ticket-id.

A more convenient and efficient way is having you set the message header field
correlationId. Its value will be found then on the corresponding MTS responses in their
header field of the same name.

4.6 Connecting a queue consumer without MTS SDK

In the exceptional case that you need to connect a queue consumer without the MTS
SDK, follow these instructions:

Important

When using queue declare, please make sure that you use exactly the following queue
arguments (no more, no less)

x-queue-master-locator: min-masters

Otherwise, the MTS SDK will not work correctly.

 www.sportradar.com Page | 17

5 Logging

To make it easier to find the log entry associated with a particular action that occurred
within the SDK, the logs are split into several files.

• Feed log: contains log entries for all messages send to or received from the MTS
• Rest log: contains log entries for all messages send or received from API calls1
• Cache log: contains log entries for all messages related to internal cache(s)
• Execution log: contain log entries for all important actions and all error / warning

conditions which occur within the SDK
• Client interaction log: logs the interaction between the user code and the SDK
• Statistics log: contains periodically written statistic information

To enable the SDK logging, the logging framework used by the SDK must be properly
configured. The configuration is done by calling the following method:

SdkLoggerFactory.Configure(new FileInfo("config_file_path"));

The default configuration file can be obtained from the SDK example project available
on the SDK site.
Logs are used by the support team, so it is recommended that you send them along
with any emails regarding the issue.

1 REST API calls are made only when building ticket with UnifiedFeed selections

 www.sportradar.com Page | 18

6 Configuration

The configuration needed by the SDK must be provided via the app.config file, which
must contain the following section:
<mtsSdkSection
 username="username",
 password="password",
 host=" mtsgate-ci.betradar.com ",
 vhost="/vhost",
 useSsl="false",
 node="3",
 bookmakerId="1",
 limitId="1",
 currency="EUR",
 channel="Internet",
 accessToken="your_uf_access_token",
 provideAdditionalMarketSpecifiers="true",

port="5671",
exclusiveConsumer="true",
keycloakHost="https://mts-auth.sportradar.ag",
keycloakUsername="username",
keycloakPassword="password",
keycloakSecret="secret",
mtsClientApiHost="http://10.200.24.234:9211/edge/proxy",
ticketResponseTimeout="15000",
ticketResponseTimeoutPrematch="5000",
ticketCancellationResponseTimeout="600000",
ticketCashoutResponseTimeout="600000",
ticketNonSrSettleResponseTimeout="600000" />

Required attributes:

• username: Username used to connect to the AMQP broker. Betradar provides this value.
• password: Password used to connect to the AMQP broker. Betradar provides this value.
• host: The hostname of the AMQP broker. Please use the following hostnames unless

the integration team provides different ones.
o Integration environment: mtsgate-ci.betradar.com
o Production environment: mtsgate-t1.betradar.com

Optional attributes:

• vhost: The name of the virtual host configured on the AMQP broker. If the value is not
specified, the value of ‘/username’ attribute is used as virtual host.

 www.sportradar.com Page | 19

• useSsl: The value specifying whether SSL will be used when connecting to the broker.
Default value is true.

• node: This value is used to filter MTS responses which were produced as responses to
requests send by different SDK instances. In most configurations each SDK should use
different node value. Default value is 1.

• bookmakerId: When provided, it is used as the default value for the BookmakerId on
the ticket. The value can be overridden when building the ticket. Betradar provides this
value.

• limitId: When provided, it is used as the default value for the LimitId property on the
ticket. The value can be overridden when building the ticket. Betradar provides the set of
available values.

• currency: When provided, it is used as the default value for the Currency property on
the ticket. The value must comply with the ISO 4217 standard.

• channel: When provided, it is used as the default value for the SenderChannel property
on the ticket. Value must be one of the SenderChannel enumeration members.

• accessToken: When selections are build using UnifiedOdds ids, the accessToken is
used to access sports API. Also ensure that server running the sdk is whitelisted on
api.betradar.com. Betradar provides this value.

• provideAdditionalMarketSpecifiers: This value is used to indicate if the sdk should
add market specifiers for specific markets. Only used when building selection using
UnifiedOdds ids. If this is set to true and the user uses UOF markets, when there are
special cases (market 215, or $score in SOV/SBV template), sdk automatically tries to
add appropriate specifier; if set to false, user will need to add this manually.

• port: Port should be chosen through the useSsl property. Manually setting port number
should be used only when non-default port is required.

• exclusiveConsumer: The value specifying whether the rabbit consumer channel should
be exclusive. Default value is true.

• keycloakHost: The auth server for accessing MTS Client API.
• keycloakUsername: The default username used to get access token from the auth

server. It can be overridden when the MTS Client API methods are called.
• keycloakPassword: The default password used to get access token from the auth server.

It can be overridden when the MTS Client API methods are called.
• keycloakSecret: The secret used to get access token from the auth server.
• mtsClientApiHost: The MTS Client API host.
• ticketResponseTimeout: The ticket response timeout in ms. Default value is 15000ms

and it can't be less than 10000ms or greater than 30000ms. (Also default for tickets with
selections using “live” ids)

• ticketResponseTimeoutPrematch: The ticket response timeout in ms. Default value is
5000ms and it can't be less than 3000ms or greater than 30000ms. Used for tickets
containing selections with “lcoo” id.

• ticketCancellationResponseTimeout: The ticket cancellation response timeout in ms.
Default value is 600000ms and it can't be less than 10000ms or greater than
3600000ms.

• ticketCashoutResponseTimeout: The ticket cashout response timeout in ms. Default
value is 600000ms and it can't be less than 10000ms or greater than 3600000ms.

• ticketNonSrSettleResponseTimeout: The ticket non-Sportradar response timeout in ms.
Default value is 600000ms and it can't be less than 10000ms or greater than
3600000ms.

• sslServerName: The server name that will be used to check against SSL certificate.

 www.sportradar.com Page | 20

For more information on ticket properties, please refer to the MTS_Ticket_Integration
document.

7 Obtaining the SDK

The SDK is provided as a code library (Sportradar.MTS.SDK.dll) available from the SDK
site and via the NuGet package manager. The use of the NuGet package manager is
recommended as it supports update notifications and makes it easier to obtain new
releases of the SDK.

8 SDK setup and teardown

The SDK is setup by the following steps:

• Creating an instance of the MtsSdk class.
• Attaching to the following events exposed by the MtsSdk type.

o SendTicketFailed – raised if the ticket could not be send to the AMQP broker
within the set timeout (usually 15 seconds). This usually indicates an Internet
connection or firewall issues.

o TicketResponseReceived – occurs when a response to ticket placement or ticket
cancellation request from the MTS is received.

o UnparsableTicketResponseReceived – occurs when the response from the MTS
cannot be deserialized. This usually indicates that a deprecated version of the
SDK is being used.

o TicketResponseTimedOut - event to notify user if the ticket response did not
arrive in timely fashion (when sending in non-blocking mode). Timeouts are set
using ticketResponseTimeout, ticketCancellationResponseTimeout and
ticketCashoutResponseTimeout.

• Opening the created MtsSdk instance.

These steps can be performed by the following code:
var config = MtsSdk.GetConfiguration();
var mtsSdk = new MtsSdk(config);
mtsSdk.SendTicketFailed += OnSendTicketFailed;
mtsSdk.TicketResponseReceived += OnTicketResponseReceived;
mtsSdk.UnparsableTicketResponseReceived += OnUnparsableTicketResponseReceived;
mtsSdk. TicketResponseTimedOut += OnTicketResponseTimedOut;
mtsSdk.Open();

 www.sportradar.com Page | 21

For more information on how to handle the events, refer to the SDK examples and/or
the SDK code documentation.

Once the initialized MtsSdk instance is no longer needed, it must be teardown in order to
release the resources it is holding. It is also recommended to detach from events
before disposing of the instance. This can be accomplished using the following code:
mtsSdk.SendTicketFailed -= OnSendTicketFailed;
mtsSdk.TicketResponseReceived -= OnTicketResponseReceived;
mtsSdk.UnparsableTicketResponseReceived -= OnUnparsableTicketResponseReceived;
mtsSdk. TicketResponseTimedOut -= OnTicketResponseTimedOut;
mtsSdk.Close();

9 Building ticket instances

The SDK uses a “builder pattern” to simplify the process of creating new ticket
instances. Below is a list of the most noticeable builders.

• TicketBuilder: A root builder used as a starting point when building tickets.
• SenderBuilder: Used to specify the information about a ticket sender (bookmaker).
• EndCustomerBuilder: Used to build EndCustomer instances, representing the punter

associated with the ticket. This information is part of the send element.
• BetBuilder: Used to build bet instances, which is part of the ticket. Each ticket must

contain at least one bet.
• SelectionBuilder: Used to build selection instances, which are parts of bet. Each bet

must contain at least one selection.

Below is a code snippet that builds a ticket containing the mandatory information.
Please note that some information from the configuration is automatically applied to the
ticket, so changing the configuration may cause the snippet below to produce an
incomplete ticket. For more information refer to the configuration section of this
document and the MTS_Ticket_Integration document.
Builders can be obtained on mtsSdk instance through BuilderFactory.

var _builderFactory = _mtsSdk.BuilderFactory;
var ticket = _builderFactory.CreateTicketBuilder()
 .SetTicketId("ticketId")
 .SetSender(_builderFactory.CreateSenderBuilder()
 .SetCurrency("EUR")
 .SetEndCustomer(_builderFactory.CreateEndCustomerBuilder()
 .SetId("customerClientId")
 .SetConfidence(1)
 .SetIp(IPAddress.Loopback)

 www.sportradar.com Page | 22

 .SetLanguageId("en")
 .Build())
 .Build())
 .AddBet(_builderFactory.CreateBetBuilder()
 .SetBetId("betId")
 .SetBetBonus(1)
 .SetStake(1, StakeType.Total)
 .AddSelectedSystem(1)
 .AddSelection(_builderFactory.CreateSelectionBuilder()
 .SetEventId(1)
 .SetId("selectionId")
 .SetOdds(11000)
 .Build())
 .Build())
 .BuildTicket();

 www.sportradar.com Page | 23

10 Sending tickets to MTS

The SDK supports two ways of sending tickets to the MTS. The recommended way is to
use non-blocking mode. Non-blocking means that the execution of the current thread is
not blocked after the ticket is sent and the response from MTS
(TicketResponseReceived event) is processed in another thread. To send a ticket in a
non-blocking mode, the following line can be used:

mtsSdk.SendTicket(ticket);

For this mode, the TicketResponseTimedOut event is also available to notify the user if
the ticket response has not arrived in timely fashion.

Important consideration

When using the TicketResponseReceived event, it is advisable to queue the response
to the client’s own threads. This is because if the client code is executed inside the
event handler and if it takes a long time, the entire SDK instance may be disconnected
from the RabbitMQ server due to response timeout. Response handling should be short
when used directly on the TicketResponseReceived event, as it is called on the
consumer thread. It is also advisable to use try and catch patterns in the handler to log
and handle any problems while processing the response.

When the ticket is sent in blocking mode, the current thread is blocked until a response
is received from MTS or a timeout occurs (usually 15 seconds). When using blocking
mode, the TicketResponseReceived event for that ticket is never raised. The following
line can be used to send a ticket in blocking mode:
var ticketResponse = mtsSdk.SendTicketBlocking(ticket);

 www.sportradar.com Page | 24

11 Custom bet

The CustomBetManager provides an easy way to fetch available selections for a
selected event and calculate the probability for a list of provided selections. To get a
reference to the CustomBetManager, use the following property:
mtsSdk.CustomBetManager;

To get available selections for the provided event, use the following method:
manager.GetAvailableSelectionsAsync(eventId);

To calculate probability for a list of selections, use the following method:
manager.CalculateProbability(selections);

CustomBetManager uses builder pattern to simplify creation of selections. To create a
selection, use the following methods:
manager.CustomBetSelectionBuilder
 .SetEventId(eventId)
 .SetMarketId(marketId)
 .SetOutcomeId(outcomeId)
 .SetSpecifiers(specifiers)
 .Build();

 www.sportradar.com Page | 25

12 Tips and tricks

12.1 Using multiple SDK instances

If the client wants to use multiple SDK instances for more ticket throughput, the
following needs to be done on the client side. Each use of the SDK instance should be
in a separate host (process) because the library uses singletons to create interfaces. If
exclusive connection is enabled (which is enabled by default settings, see the
exclusiveConsumer property in mtsSdkSection section) the new instance on a
different host must not use the same node id (see the node property in mtsSdkSection
section) for connecting to MTS Border RabbitMQ, if so then the new connections will fail
to connect to RabbitMQ server. The exclusiveConsumer property is there to protect the
client from consuming responses from other SDK instances and that SDK would wait for
a response that would never arrive.

12.2 Checking connection status

The SDK uses the ConnectionStatus interface (which can be obtained from the MtsSdk
instance) to retrieve information about the status of the connection (if it is connected,
time of connection, time of disconnection, etc.).

There are also ConnectionChange events that are triggered when the connection status
changes.

12.3 Connection and reconnection handling using the SDK

If the connection goes down, the client should keep the initial SDK instance open and
use its connection handling to reconnect, rather than opening new instances. Opening
new instances can cause issues with hitting connection limits on the server side. The
SDK retry window is not configurable as it also helps to protect our servers from heavy
loads in case of problems. In any case, running a single instance of the SDK in such
cases is the most reliable way, and even the intended way from the SDK perspective.
Also, SDK reconnections to the server are retried with a delay window that usually starts
at 100 milliseconds and increases with each reconnect error (to protect against heavy
loads), but it is not greater than 5 seconds.

 www.sportradar.com Page | 26

12.4 Additional notes for connection whitelisting

MTS would like to take this opportunity to reiterate that clients should be cautious when
whitelisting MTS IPs as this can lead to an unplanned total loss of network connectivity
and should therefore be avoided where possible. Any connectivity issues resulting from
such a client setup are therefore the sole responsibility of the client and are considered
a risk of which the client is fully aware.
Clients should rely on verified TLS connections with MTS, as MTS provides a
valid server certificate during the TLS handshaking phase, which clients should
verify based on the FQDN they are connecting to.

In the case the SDK throws this error without an additional close-reason, the suggested
approach is to check that whitelisting is correctly applied for the client's IP.

Error with close-reason example

Error opening the consumer channel with channelNumber: 577866037 and queueName:
vhost_name-Confirm-node2000.
RabbitMQ.Client.Exceptions.BrokerUnreachableException: None of the specified
endpoints were reachable --->
RabbitMQ.Client.Exceptions.OperationInterruptedException: The AMQP operation was
interrupted: AMQP close-reason, initiated by Peer, code=530, text="NOT_ALLOWED -
access to vhost '/vhost_name refused for user 'vhost_name': connection limit (30)
is reached", classId=10, methodId=40, cause= (edited)

Error without close-reason example

11:50:03,682 ChannelFactory INFO Creating connection ...
11:50:04,198 RabbitMqConsumerChannel INFO Error opening the
consumer channel with channelNumber: 1199410282 and queueName: vhost_name-
Confirm-node1.
11:50:04,200 RabbitMqConsumerChannel INFO Opening the consumer
channel will be retried in next 1500 ms.
11:50:05,709 ChannelFactory INFO Creating connection ...
11:50:06,234 RabbitMqConsumerChannel INFO Error opening the
consumer channel with channelNumber: 1199410282 and queueName: vhost_name-
Confirm-node1.

 www.sportradar.com Page | 27

12.5 Building selection instances

The SDK supports markets used by the three Betradar feeds – LO (Live Odds), LCoO
(Live Cycle of Odds) and UF (Unified Feed) implemented by different methods on the
SelectionBuilder type.

• SetId(string id);
This method should be used when building string representations of the market
identifiers directly (without the help from the SDK).

• SetIdLo(int type, int subType, string sov, string selectionId);
This method should be used when building market identifiers from information provided
by the LO feed.

• SetIdLcoo(int type, int sportId, string sov, string selectionId);
This method should be used when building market identifiers from information provided
by the LCoO feed.

• SetIdUof(Product product, URN sportId, int marketId, string
selectionId, IDictionary<string, string> specifiers,
IReadOnlyDictionary<string, object> sportEventStatus);
This method should be used when building market identifiers from information provided
by the UF feed. Note: this method will throw if accessToken is not provided. Method
parameter sportEventStatus needs the following keys:

o HomeScore (home_score in sport event status)
o AwayScore (away_score in sport event status)
o Server (current_server in sport event status)

If you are using UnifiedFeed sdk the map with the correct keys may be obtained:
var sportEventStatusProperties = sportEvent.Status.Properties;

END OF DOCUMENT

