

MBS SDK Java Integration
Guide
February 2024

 www.sportradar.com Page | 2

1 Document history

Version Author Date Comments
1.0 Dejan Pavšek 2024-02-16 Initial version

 www.sportradar.com Page | 3

2 Table of contents

1 Document history ... 2
2 Table of contents .. 3
3 Getting started .. 4
4 Obtaining the SDK ... 4
5 SDK setup and use .. 4

5.1 Configuration ... 5
5.2 Creating and connecting the SDK ... 7
5.3 Composing transactions .. 7
5.4 Sending transactions ... 7

5.4.1. Ticket protocol ... 8
5.5 SDK troubleshooting .. 9
5.6 Closing the SDK .. 10

 www.sportradar.com Page | 4

3 Getting started

MBS SDK is a client library that facilitates the integration of a client’s system with Sportradar’s
Managed Betting Services (MBS). The library simplifies the integration by reducing the effort
required for code development, testing and maintenance.

Managed Betting Services is a suite of services designed for betting operators and lotteries to
fully manage their sportsbooks. The services include integrated trading tools, analytics, risk
management and access to AI-driven insights into betting operations.

Before you start using the SDK, read the MTS documentation found at docs.betradar.com,
chapter Managed Trading Services (MTS) / MTS – Ticket Integration Manual.

SDK examples and code documentation are available at https://sdk.sportradar.com.

4 Obtaining the SDK

The SDK can be found in several Maven repositories (such as mavenlibs.com). Locate and
download the latest Maven package using:

Group Id: com.sportradar.mbs.sdk

Artifact Id: mbs-sdk

Version: (always download the latest version, current stable version is 0.9)

The following is an example of a Maven .pom file that references the MBS SDK.

<dependency>
 <groupId>com.sportradar.mbs.sdk</groupId>
 <artifactId>mbs-sdk</artifactId>
 <version>0.9</version>
</dependency>

5 SDK setup and use

The SDK can be set up and used by following these steps:

• Create the SDK configuration by creating an instance of the MbsSdkConfig class.
• Create an instance of the MbsSdk class (based on the required configuration).

http://docs.betradar.com/
https://sdk.sportradar.com/

 www.sportradar.com Page | 5

• Connect the created SDK instance to the MBS server.
• Use the SDK by composing transactions, sending them to MBS and receiving responses

from MBS. This is the actual interaction between the client’s system and MBS which is
required to use MBS services.

• Tear down the SDK instance when it is no longer needed.

5.1 Configuration

Required attributes:

Values of the required attributes must be provided by the Sportradar integration team. See also
MTS - Connectivity (v3.0).

Create a config object that will be used when building the SDK:

MbsSdkConfig config = new MbsSdkConfig(<wsServer>,<authServer>,
<authClientId>,<authClientSecret>,<authAudience>,<operatorId>);

List of required attributes:

wsServer

• URI of the WebSocket server to connect to.

authServer

• URI of the authorization server to send a token request to. The token request is an https
POST request and should be made before establishing a WebSocket connection.

authClientId

• Client ID to include in the token request.

authClientSecret

• Client secret to include in the token request.

authAudience

• Audience attribute to use in the token request.

https://docs.betradar.com/pages/viewpage.action?pageId=103481594

 www.sportradar.com Page | 6

operatorId

• Operator ID that identifies the client and should be included in each ticket. The value
must be provided by the Sportradar integration team.

Optional attributes:

The values of the optional attributes should not be changed unless there is a specific need to do
so.

 protocolMaxSendBufferSize;

• Specifies the maximum number of requests that have been sent but whose responses
have not yet been received. The default value is 1000. When this threshold is reached,
any new request attempt is rejected by the SDK (the ProtocolSendBufferFullException is
thrown). Any new request attempts will succeed only after some buffer space is
released.

 protocolReceiveResponseTimeout;

• Specifies the maximum time the SDK will wait for response to be received. After the
timeout has been reached, the ProtocolTimeoutException is thrown. If MbsSdk is
configured to retry operations (protocolRetryCount), the exception is suppressed and
request operation is repeated.

 protocolRetryCount;

• Specifies the number of retries to send a request after the response timeout has expired.
The default value is 0 (zero).

 unhandledExceptionHandler;

• This method manages exceptions that may occur within the SDK that are not otherwise
handled. The exceptions are usually logged for later analysis. You must implement your
own logging mechanism.

In the rare case that you need to set an optional attribute, you can do so by calling the
appropriate setter method. For example, the following call sets the protocolRertyCount attribute:

config.setProtocolRetryCount(value);

 www.sportradar.com Page | 7

5.2 Creating and connecting the SDK

Create an SDK instance which will make use of the previously created configuration:

MbsSdk mbsSdk = new MbsSdk(config);

The below call will create a WebSocket session to the MBS's WebSocket server:

mbsSdk.connect();

When connect() is invoked, the provided configuration is used for the first time. If SDK is not
able to successfully establish WebSocket connection with a server, an exception is thrown. See
SDK troubleshooting to identify the issue.

5.3 Composing transactions

Communication between the client’s system and MBS takes place through the exchange of
transactions. Transactions can be of various types. For example, when dealing with risk
management, transactions will contain the punter’s betting data (commonly known as tickets)
and responses will contain, among other data, the ticket acceptance recommendation. Other
types of transactions may include data about online gaming events and their outcomes, or data
about actions that affect the punter’s monetary balance (transfers, withdrawals, etc).

SDK uses a builder pattern to streamline the process of creating new entity instances (entities
effectively constitute a transaction). Below is an example of using the builder to create a bet
object and populate its betId property. The same builder pattern is implemented on every entity.

Example:

Bet bet = Bet.newBuilder()

 .setBetId(„betId“)

 .build();

5.4 Sending transactions

MbsSdk supports various operations. The operations are grouped in interfaces called protocols.
An example of such a protocol is Ticket Protocol.

 www.sportradar.com Page | 8

All operations are accessible through the mbsSdk instance. An example of how to use the Ticket
Protocol is shown below:

TicketProtocol protocol = mbsSdk.getTicketProtocol();

5.4.1. Ticket protocol

TicketProtocol is used to send requests to and receive responses from MBS.

An example of how to access the TicketProtocol methods is shown below.

TicketResponse response = mbsSdk.getTicketProtocol().sendTicket(request);

The following TicketProtocol methods are available:

sendTicket(TicketRequest request);

• This method sends a ticket to MTS and returns a ticket response from MTS. For
information on the content of the “request” argument, see the Ticket Placement Request
(v3.0) documentation. For information on what to expect in the response, see the Ticket
Placement Response (v3.0) documentation.

sendTicketAck(TicketAckRequest request);

• This method sends a ticket acknowledgement message to MTS and returns an
acknowledgement response from MTS. For information on the content of the “request”
argument, see the Acknowledgement Messages (v3.0) documentation. For the
response, see Acknowledgement Reply Messages (v3.0)

sendCancel(CancelRequest request);

• This method sends a ticket cancellation request to MTS and returns a cancellation
response from MTS. For information on the content of the “request” argument, see the
Cancellation Request (v3.0) documentation. For the response, see Cancellation
Response (v3.0)

sendCancelAck(CancelAckRequest request);

• This method sends a cancellation acknowledgement message to MTS and returns an
acknowledgement response from MTS. For information on the content of the “request”
argument, see the Acknowledgement Messages (v3.0) documentation. For the
response, see Acknowledgement Reply Messages (v3.0)

https://docs.betradar.com/pages/viewpage.action?pageId=86279629
https://docs.betradar.com/pages/viewpage.action?pageId=86279629
https://docs.betradar.com/pages/viewpage.action?pageId=86279631
https://docs.betradar.com/pages/viewpage.action?pageId=86279631
https://docs.betradar.com/pages/viewpage.action?pageId=86279651
https://docs.betradar.com/pages/viewpage.action?pageId=86279653
https://docs.betradar.com/pages/viewpage.action?pageId=86279635
https://docs.betradar.com/pages/viewpage.action?pageId=86279637
https://docs.betradar.com/pages/viewpage.action?pageId=86279637
https://docs.betradar.com/pages/viewpage.action?pageId=86279651
https://docs.betradar.com/pages/viewpage.action?pageId=86279653

 www.sportradar.com Page | 9

sendCashout(CashoutRequest request);

• This method sends a ticket cash-out request to MTS and returns a cash-out response
from MTS. For information on the content of the “request” argument, see the Cash-out
Request (v3.0) documentation. For the response, see Cash-out Response (v3.0)

sendCashoutAck(CashoutAckRequest request);

• This method sends a cash-out acknowledgement message to MTS and returns an
acknowledgement response from MTS. For information on the content of the “request”
argument, see the Acknowledgement Messages (v3.0) documentation. For the
response, see Acknowledgement Reply Messages (v3.0)

sendExtSettlement(ExtSettlementRequest request);

• This method sends an external settlement request to MTS and returns an external
settlement response from MTS. For information on the content of the “request”
argument, see the External Settlement Request (v3.0) documentation. For the response,
see External Settlement Response (v3.0)

sendExtSettlementAck(ExtSettlementAckRequest request);

• This method sends an external settlement acknowledgement message to MTS and
returns an acknowledgement response from MTS. For information on the content of the
“request” argument, see the Acknowledgement Messages (v3.0) documentation. For the
response, see Acknowledgement Reply Messages (v3.0)

5.5 SDK troubleshooting

In case of an error, MbsSdk delegates exception to the hosting application. If an exception
occurred as a result of operation execution, then exception is thrown as a result of the invoked
method/operation. If the exception cannot be linked to a particular operation, then the exception
is passed to the application through unhandledExceptionHandler (see config).

MbsSdk exceptions list:

AuthTokenFailureException:

• Thrown if the SDK could not obtain the authentication token (misconfiguration or network
issues).

ProtocolMessageTooBigException:

https://docs.betradar.com/pages/viewpage.action?pageId=86279641
https://docs.betradar.com/pages/viewpage.action?pageId=86279641
https://docs.betradar.com/pages/viewpage.action?pageId=86279643
https://docs.betradar.com/pages/viewpage.action?pageId=86279651
https://docs.betradar.com/pages/viewpage.action?pageId=86279653
https://docs.betradar.com/pages/viewpage.action?pageId=86279647
https://docs.betradar.com/pages/viewpage.action?pageId=86279649
https://docs.betradar.com/pages/viewpage.action?pageId=86279651
https://docs.betradar.com/pages/viewpage.action?pageId=86279653

 www.sportradar.com Page | 10

• Thrown if JSON serialized message size exceeds 128 kB, which is the largest allowed
message size.

ProtocolSendBufferFullException:

• Thrown when buffer capacity is reached. See protocolMaxSendBufferSize config
(Configuration section).

ProtocolSendFailedException:

• Thrown when the SDK could not send the message to the server (misconfiguration or
network issues).

ProtocolTimeoutException:

• Thrown if no response is received in a configured time
(protocolReceiveResponseTimeout config in the Configuration section).

SdkNotConnectedException:

• Thrown if SDK is not connected or is closed.

ServerErrorResponseException:

• Thrown if the server returns an error response.

WebSocketConnectionException:

• Thrown if a WebSocket connection could not be established (misconfiguration or
network issues).

5.6 Closing the SDK

Once the SDK instance is no longer needed, it must be torn down to release the resources it
holds.

mbsSdk.close();

END OF DOCUMENT

